

Technical Memorandum

To:Dawn TannerFrom:Omid MohseniSubject:Pleasant Lake Bathymetry SurveyDate:July 22, 2020c:23/62-1356

Saint Paul Regional Water Services (SPRWS) operates a system that transports water from the Mississippi River at the Fridley Pump Station through two 60-inch pipes to Charley Lake. The Mississippi water flows by gravity from Charley Lake through a connecting channel to the west bay of Pleasant Lake, located in North Oaks, a suburb of Saint Paul, Minnesota. There have been reports by residents that a sandbar has formed as a result of water discharge from Charley Lake into Pleasant Lake. To address the potential adverse effects of the perceived sandbar, Vadnais Lake Area Water Management Organization (VLAWMO) retained Barr Engineering Co. (Barr) to complete a bathymetry survey of the west bay of Pleasant Lake in 2020 to accurately locate the sandbar. This memorandum is a summary of the bathymetry survey.

1.0 Field Work

The bathymetry survey was conducted on May 20, 2020, by a two-person surveying team. The instruments were a CEE Echo Hydrographic system, Trimble R7 GPS Receiver, and Topcon RTK GA GPS. The survey started at the north end of the west bay of Pleasant Lake. As the survey team proceeded to the north end, they noticed very thick weeds in the lake, predominately on the west and northern parts of the bay. The surveying team was concerned that the echo sounder would not be able to correctly capture the bottom shelf of the lake. As a result, they did some survey pole shots using GPS to check the actual depths in the area covered with aquatic plants. The pole shots verified that the echo sounder was occasionally capturing the lake bed. Accuracy of the data located in that area was within 0.5 feet.

The team surveyed a 50-foot grid across the bay. The coverage is shown in Figure 1. The echo sounder takes 15+ points per second. The west side of the bay was all weeds. In the northern part of the bay, most of these 15 points were on weeds. Once the team made it to the "sandbar," they could see sand and rock on the bottom. The depth over the sandbar was approximately 2 to 3 feet. As the team proceeded south of the sandbar, they encountered a very deep area, approximately 40 feet.

Where the channel from Charley Lake discharges into the west bay of Pleasant Lake, no sandbar was evident and depths were constant.

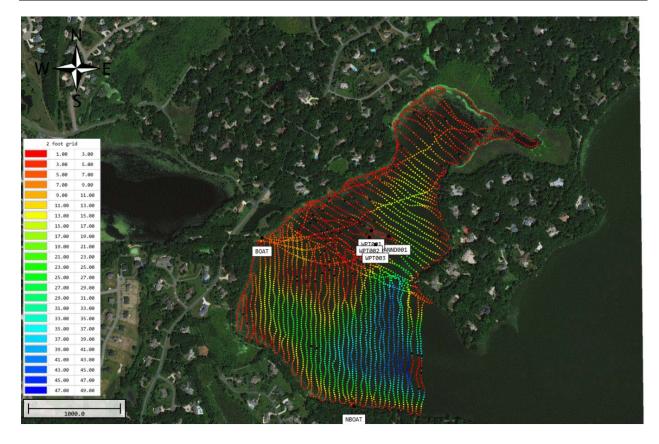


Figure 1. The survey paths of the west bay of Pleasant Lake

2.0 Bathymetry Map

The data collected during the survey was used to develop a bathymetry map of the west bay in the Civil 3D software program. To develop the map, 80 to 90 percent of the bathymetry data shots west of the "sandbar" were eliminated due to the weed thickness. This process was completed using HydroMagic hydrographic software.

The attached map is the result of the bathymetry survey. The horizontal datum is NAD83 and the vertical datum is NAVD88.

The map shows a hole approximately 400 feet to the east of the discharge point of the channel from Charley Lake. The identified sandbar is approximately 1,500 feet to the east of the discharge point.

REVISION DESCRIPTION

BY CHK APP. DATE

SURVEY LEGEND

800	MAJOR CONTOUR
	GRID LINES (500)

WATER SURFACE 05-22-2020 = 883.6

AS	s	OF	DRA	w	NG	FIL	E:

- DATE OF SURVEY 05-20-2020
- ORIGINIDATE OF BASE MEPN2020 COORDINATE SYSTEM: Minnesota State Plane.SOUTH Zone
- HORIZONTAL DATUM NADRS (2011) REF. VRS SYSTEM
- VERTICAL DATURE North American Vertical Datum of 1988
- ADDITIONAL FLE INFORMATION CEE ECHO HYDROGRAPHIC SYSTEM

PLEASANT LAKE	BARR PROJECT No. 23/62-1356.00
NORTH OAKS, MINNESOTA	CLIENT PROJECT No
BATHYMETRY SURVEY WEST BAY 05-2020	DWG. No. RE

Technical Memorandum

To:Dawn TannerFrom:Kevin Menken and Omid MohseniSubject:Pleasant Lake Sediment StudyDate:August 29, 2020c:23/62-1356

Pleasant Lake in North Oaks, Minnesota, is listed by the Minnesota Pollution Control Agency (MPCA) as impaired for mercury and high levels of nutrients. The MPCA requires a total maximum daily load (TMDL) or equivalent study to address the nutrient impairment of the lake. In addition, it appears that there are some potential issues with sediment transport from Charley Lake into Pleasant Lake through the connecting channel between the two lakes.

Vadnais Lake Area Water Management Organization (VLAWMO) retained Barr Engineering Co. (Barr) to conduct a field study to (1) investigate the physical characteristics of the sandbar in the shallow area in the west bay of Pleasant Lake, and (2) determine the concentrations of various phosphorus fractions in sediment in deep areas of Pleasant Lake. The purpose of this field study is to aid VLAWMO with a future TMDL or equivalent study of the lake. This memorandum summarizes the results of the field study conducted by Barr in 2020.

1.0 General Description of Pleasant Lake

Pleasant Lake is located in North Oaks, a suburb of the city of Saint Paul. The surface area of the lake is 607 acres and the maximum depth is 58 feet. The littoral zone includes about 45 percent of the lake.

Saint Paul Regional Water Services (SPRWS) operates the system that transports water from the Mississippi River at the Fridley Pump Station through two 60-inch pipes to Charley Lake. The Mississippi water flows by gravity from Charley Lake through a connecting channel to the west bay of Pleasant Lake. The transported water is then routed through Sucker Lake and Vadnais Lake into the McCarrons Water Treatment Plant, which serves Saint Paul residents.

Barr collected sediment samples from Pleasant Lake on May 29, 2020, and June 24, 2020. The sampling locations are shown in Figure 1.

2.0 Physical Characteristics of the Sandbar in the West Bay

2.1 Field Work

The bathymetry of the west bay of Pleasant Lake shows a shallow sandbar near the center of the west bay (Figure 1). Water depth is approximately 2 to 3 feet over the sandbar, and vegetation is sparse. Sand, gravel, cobble, and boulders (1 to 2 feet in diameter) were observed in this area. To the north, west, and

south of this sandbar, water depth increases and thick, curlyleaf pondweed was observed during the field work.

Sediment cores were collected at four locations in shallow water in the west bay of the lake using a 3inch-diameter push corer. Sediment cores were extruded in a plastic tray in the boat and logged for appearance and physical characteristics. On May 29, 2020, sediment samples were collected from coring locations S7 and S8. These two locations were identified after the bathymetry survey of the west bay that was performed on May 20, 2020.

2.2 Analysis of the Sandbar Samples

The sediment samples were sent to Soil Engineering Testing (SET) in Bloomington, Minnesota, for grainsize analysis and sediment density measurement. The SET lab report is provided in Attachment A. On June 24, 2020, additional sediment samples were collected to verify the location of the sandbar. These samples were collected at locations S9 and S10 and logged for physical description, but no analysis was performed. They contained the root system of aquatic plants (macrophytes) with little-to-no sand particles, i.e., locations S7 and S8 more accurately represent a sandbar in the west bay than locations S9 and S10. Observations of sediment samples collected at locations S7, S8, S9, and S10 are summarized below.

- Sediment sample S7
 - o Water depth: 2 feet
 - Sediment core interval: 0–1 foot
 - o Area: Sparse vegetation, sand and gravel visible on lake bottom
 - Sediment: Medium-to-dark brown; sand with silt and a little bit of gravel, shell fragments, plant roots, and dead plant matter
 - o Percent fines: 6%
 - o Median size (d₅₀): 220 microns
 - o Specific gravity: 2.63
- Sediment Sample S8
 - o Water depth: 2.6 feet
 - Sediment core interval: 0–1 foot
 - o Sparse vegetation; sand and gravel visible on lake bottom
 - Medium-to-dark brown; sand with silt and a little bit of gravel and plant roots. Small plant roots were quite numerous and seemed to be helping sediment core hold its shape after extruding from coring tube.
 - o Percent fines: 12%

- o Median size (d₅₀): 280 microns
- o Specific gravity: 2.57
- Sediment sample S9
 - Water depth: 4 feet
 - Medium-to-dark brown soft organic muck
- Sediment sample S10
 - o Water depth: 4 feet
 - o Medium-to-dark brown soft organic muck

2.3 Synthesis of the Sandbar Data

Based on the bathymetry survey conducted in 2020, the particle size distribution of samples collected at locations S7 and S8, and the presence of dense aquatic plants, it is unlikely that the sandbar located about 1,500 feet away from the discharge point of the channel from Charley Lake is the result of water discharge from Charley Lake into Pleasant Lake. However, the hole near the discharge point may be the result of water discharge from Charley Lake into the west bay of Pleasant Lake.

3.0 Sediment Phosphorus Fractionation

3.1 Field Work

Sediment cores were collected for phosphorus analyses at coring locations S1 through S6, where water depth was greater than 20 feet (Figure 1). Areas with water depths greater than 20 feet normally exhibit thermal stratification and anoxia (low oxygen) in summer months, which could result in internal loading. Currently, SPRWS is managing a direct oxygen injection system at the three deepest points in Pleasant Lake (see Figure 1). At these locations, sediments that would normally experience anoxic conditions during summer thermal stratification may stay partially oxygenated at the sediment-water interface due to the oxygen injection at the bottom of the lake.

Sediment cores were collected by a gravity corer suspended on a rope. A 7-centimeter (cm)-diameter core tube is pushed into the sediment from weights attached to the coring device, and a messenger is sent down the rope to close a stopper on the top of the coring tube. Each sediment core was extruded from the coring tube and sliced into 2-cm-thick intervals from 0 cm to 10 cm, and 4-cm intervals from 10 cm to 18 cm. The sediment samples were placed in a cooler with ice for transport until they could be stored in a refrigerator at Barr's field office.

3.2 Analysis of the Bed Sediment Samples

Sediment samples were analyzed for several phosphorus fractions, percent moisture content, and percent organic matter. Moisture content was determined by measuring the mass loss of samples dried in an oven at 100 °C. Percent organic matter was determined by measuring the mass lost by burning the

samples at 550 °C (loss on ignition). Measurement of various phosphorus fractions was achieved by subjecting the sediment samples to various extraction solutions, as summarized below:

- Mobile phosphorus, including iron-bound phosphorus fraction (mobile-P): solution of sodium dithionite and sodium bicarbonate. Dithionite reduces insoluble ferric iron to soluble ferrous iron, while bicarbonate buffers the pH.
- Aluminum-bound phosphorus fraction (AI-P): solution of 0.1M NaOH (sodium hydroxide) to raise the pH and dissolve aluminum-bound phosphorus.
- Organic phosphorus fraction (Org-P): solution of 0.1M NaOH digested with potassium persulfate.
- Calcium phosphorus fraction (Ca-P): solution of 0.5M HCl (hydrogen chloride) to lower the pH and dissolve calcium-bound phosphorus.

Results of sediment phosphorus fractionation are plotted in Figure 2, reported as milligram phosphorus per gram dry sediment (mg P/g dry sediment), and Figure 3, reported as mg P/cm³ wet sediment. Average concentrations of mobile-P and organic-P in the top 6 cm of each core were calculated and are summarized in Table 1. Results in Table 1 are presented as g P/cm-m², a unit of concentration that makes it easier to assess the amount of phosphorus per square meter of lake bed, i.e., 1 g P/cm-m² is equal to 10 mg P/cm³.

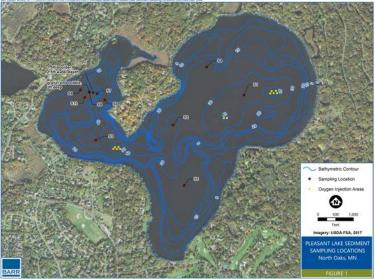
Sediment Core	Mobile-P (g P/cm-m ²)	Org-P (g P/cm-m ²)
S1	0.82	0.25
S2	0.85	0.24
S3	1.73	0.33
S4	0.36	0.22
S5	0.71	0.27
S6	0.88	0.32

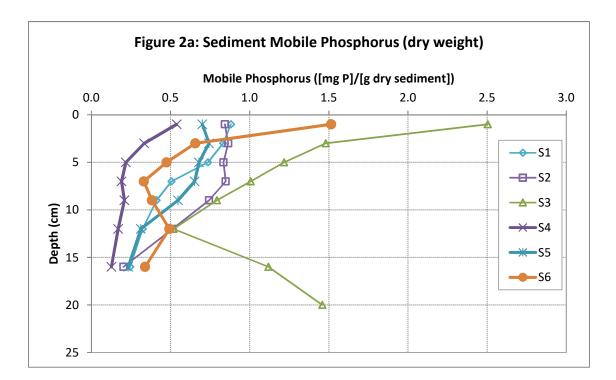
Table 1. Concentrations of Mobile-P and Organic-P in Top 6cm of Sediment

3.3 Synthesis of the Sediment Data

Concentrations of mobile-P are high in Pleasant Lake sediment cores, likely due to the oxygen injection system keeping more iron oxidized. The oxygenation of the hypolimnion (the water column below the thermocline) prevents the top of the sediment from going anoxic and allows for the buildup of oxidized iron, or ferric iron [Fe(III)]. Without the oxygenation system, the hypolimnion would be depleted of oxygen in the warm summer months, and microorganisms in the anoxic sediment would use iron for respiration in place of oxygen, converting insoluble ferric iron [Fe(III)] to soluble ferrous iron [Fe(II)].

Relationships between concentrations of mobile-P and internal loading rates of phosphorus from lake sediments have been studied. Pilgrim et al. (2007) reported phosphorus internal loading rates under anoxic conditions for sediment cores collected from Minnesota lakes with a range of sediment mobile-P


concentrations. The concentrations of mobile-P in Pleasant Lake sediment cores S1, S2, S5, and S6 are comparable to the highest mobile-P observed in that study, while mobile-P concentrations in S3 are nearly double those observed by Pilgrim et al. (2007). The oxygen injection system in Pleasant Lake appears to be effectively keeping iron oxidized in the top several centimeters of sediment, building up iron-bound phosphorus (mobile-P). However, if the sediment of Pleasant Lake were to turn anoxic, the insoluble ferric iron would start to be reduced to ferrous iron and could contribute to high rates of internal loading.


The sediment mobile-P concentrations can provide an estimate of the maximum internal loading rate of phosphorus that might be expected under continuous anoxic conditions in a stratified lake, using the relationship developed by Pilgrim et al. (2007). The dynamics of anoxia in sediment, and therefore internal loading of phosphorus in Pleasant Lake, are more complex due to the oxygen injection system. To better understand internal loading that may still be occurring in Pleasant Lake, more detailed water quality data could be collected, such as dissolved oxygen concentration profiles near the lake bottom at various distances from the oxygen injection points and at different points in the season. Sediment samples that were collected for phosphorus fractionation could also be analyzed for total iron concentrations to determine the ratio of iron to mobile-P in the sediment. This would help assess whether there is sufficient iron in the sediment to potentially bind more phosphorus under oxic conditions. A phosphorus mass balance model could also be developed for the lake that could simulate phosphorus concentrations in the hypolimnion (deep water) and epilimnion (surface mixed layer) of the lake.

References

Pilgrim, K.M., Huser, B., and Brezonik, P.L. 2007. A method for comparative evaluation of whole-lake and inflow alum treatment. *Water Research*, 41(6):1215-24. DOI: 10.1016/j.watres.2006.12.025.

Rev Funter: AvGII, 10.7.1, 2020-07-32-08-12 File: 1/Property/2/10/2/13/9/Adapt/Revented/Property/Later Enforced Exercises Later Enforcement Exercises Later Exercises Late

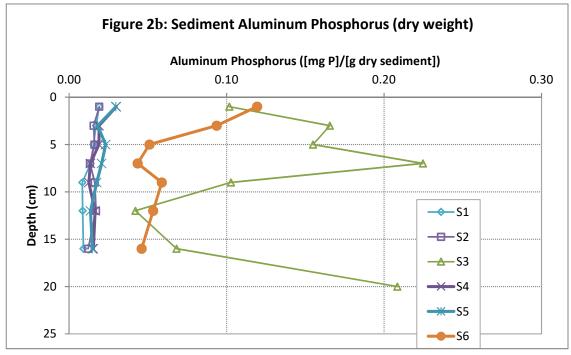
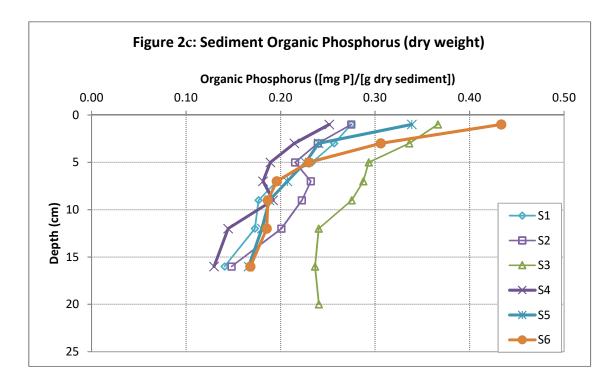



Figure 2. Pleasant Lake Sediment Phosphorus Fractionation, Dry Weight Basis.

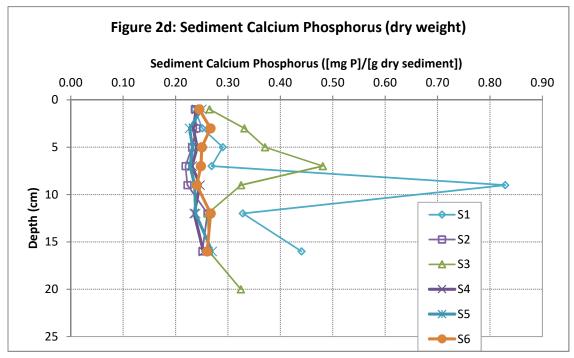
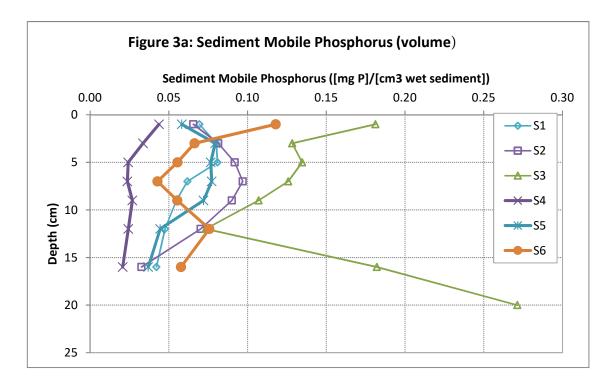



Figure 2. Pleasant Lake Sediment Phosphorus Fractionation, Dry Weight Basis.

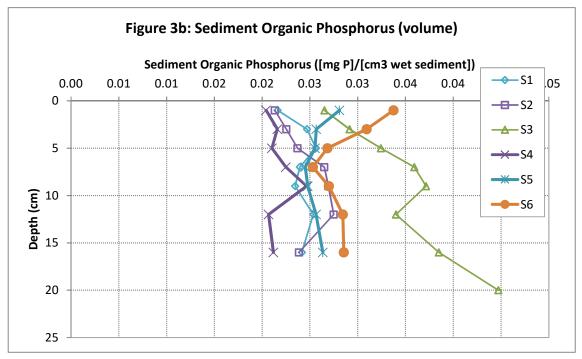
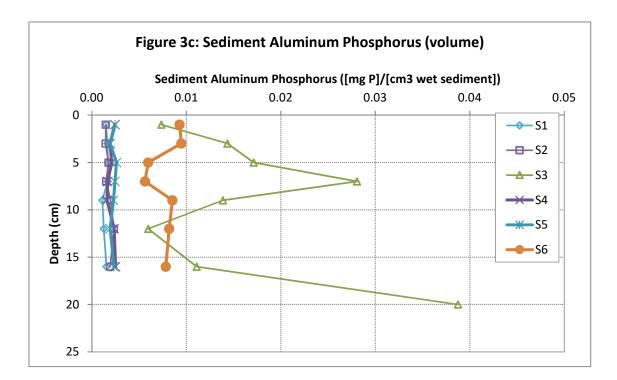



Figure 3. Pleasant Lake Sediment Phosphorus Fractionation, Sediment Volume Basis.

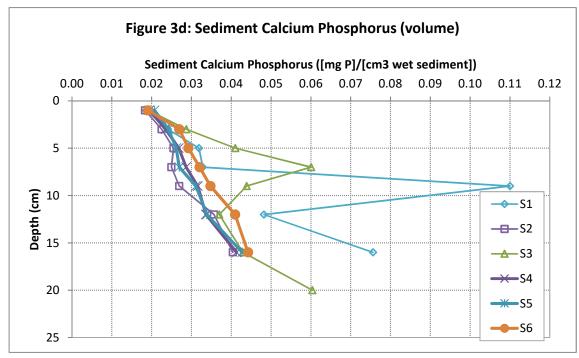
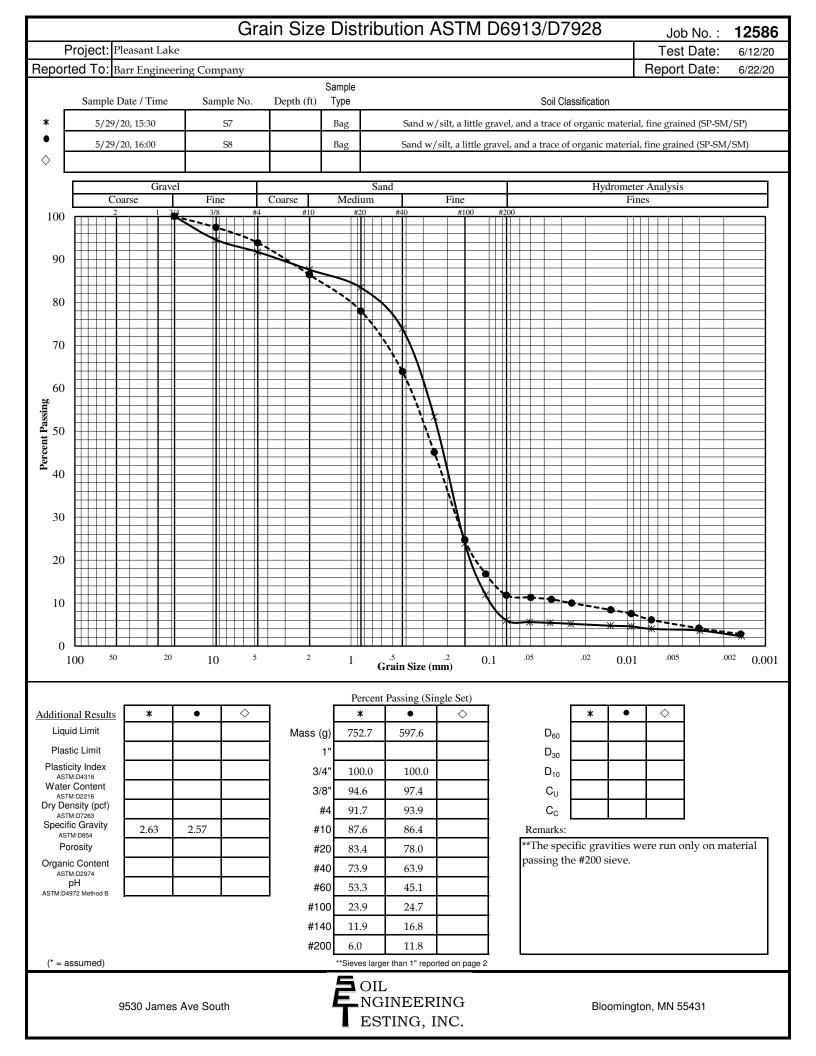



Figure 3. Pleasant Lake Sediment Phosphorus Fractionation, Sediment Volume Basis.

Attachment A:

SET Laboratory Report on the Sandbar Sediment Samples

			Grair	າ Size Distr	ribution <i>i</i>	ASTM D69 [.]	13/D7928	Job No. : 12586
	Project:	Pleasant Lak	.e					Test Date: 6/12/20
Repo	rted To:	Barr Enginee	ering Company					Report Date: 6/22/20
пере		Dari Englice		Sample)			Tieport Date: 0/22/20
	Sample	e Date / Time	Sample No.	Depth (ft) Type	-		Soil Classification	
Spec 1	5/29	9/20, 15:30	d a little gravel, fine grair	ned (SP-SM/SP)				
Spec 2	5/29	9/20, 16:00	58	Bag		l a little gravel, fine grain	ed (SP-SM/SM)	
Spec 3								
					Sieve Dat	a		
		Specimer	1	<u> </u>	Specimer	12	5	Specimen 3
	Sieve	opeointer	% Passing	Sieve		% Passing	Sieve	% Passing
	3"		ye + e e e e e e e e e e e e e e e e e e	3"	-	/ · · · · · · · · · · · · · · · · · · ·	3"	
	2"			2"			2"	
	1 1/2"			1 1/2			1 1/2"	
	1"			1"			1"	
	3/4"		100.0	3/4"		100.0	3/4"	
	3/8"		94.6	3/8"		97.4	3/8"	
	#4		91.7	#4		93.9	#4	
	#10 #20		87.6 83.4	#10 #20		86.4 78.0	#10 #20	
	#20 #40	<u> </u>	73.9	#20 #40		63.9	#20 #40	
	#40		53.3	#40		45.1	#40	
	#100	 	23.9	#100		24.7	#100	
	#140		11.9	#140		16.8	#140	
	#200		6.0	#200		11.8	#200	
		· · · ·			lydrometer			I
		Specimer			Specimer	า 2		Specimen 3
Dia	neter (m	ım)	% Passing	Diamet		% Passing	Diameter	% Passing
	0.051		5.6	0.050		11.3		
	0.036		5.4	0.035		10.9		
ļ	0.026		5.2	0.025		10.0		
	0.013		4.7	0.013		8.4		
	0.009		4.6	0.009		7.6		
	0.007		4.0 3.6	0.007		6.1 4.2		
	0.003		2.3	0.002		2.8		_
	0.00.	<u> </u>	2.0		Remarks			
		Specimer	ı 1		Specimer		5	Specimen 3
					OII			
				F	OIL NGINEE	DINC		
		9530 James	Ave South		ESTING		Blooming	gton, MN 55431

Attachment B:

Pace Analytical Services, LLC, Sediment Iron Content Laboratory Report

Pleasant Lake Mobile-P and Total Iron

						Ratio of
				Mobile-P	Total Iron	Total
Core	Interv	al (cm)	Mid (cm)	(mg P/cm3)	(mg/cm3)	Fe/Fe-P
S1	0	2	1	0.0694	2.31	33
S1	2	4	3	0.0801	2.40	30
S1	4	6	5	0.0809	2.49	31
S1	6	8	7	0.0618		
S1	8	10	9	0.0547		
S1	10	14	12	0.0476		
S1	14	18	16	0.0421		
S2	0	2	1	0.0655	2.77	42
S2	2	4	3	0.0813	2.66	33
S2	4	6	5	0.0918	2.90	32
S2	6	8	7	0.0969		
S2	8	10	9	0.0900		
S2	10	14	12	0.0702		
S2	14	18	16	0.0326		
S3	0	2	1	0.1812	3.84	21
S3	2	4	3	0.1283	3.58	28
S3	4	6	5	0.1346	4.34	32
S3	6	8	7	0.1257		
S3	8	10	9	0.1070		
S3	10	14	12	0.0734		
S3	14	18	16	0.1821		
S3	18	22	20	0.2713		
S4	0	2	1	0.0437	2.22	51
S4	2	4	3	0.0336	2.23	66
S4	4	6	5	0.0242	2.31	95
S4	6	8	7	0.0236		
S4	8	10	9	0.0268		
S4	10	14	12	0.0242		
S4	14	18	16	0.0207		
S5	0	2	1	0.0582	2.73	47
S5	2	4	3	0.0794	2.90	37
S5	4	6	5	0.0766	2.85	37
S5	6	8	7	0.0772		
S5	8	10	9	0.0720		
S5	10	14	12	0.0445		
S5	14	18	16	0.0369		
S6	0	2	1	0.1179	3.01	26
S6	2	4	3	0.0664	3.51	53
S6	4	6	5	0.0555	3.54	64
S6	6	8	7	0.0427		
S6	8	10	9	0.0554		
S6	10	14	12	0.0757		
S6	14	18	16	0.0577		

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

August 17, 2020

Kevin Menken Barr Engineering 4300 MarketPointe Drive Suite 200 Minneapolis, MN 55435

RE: Project: 23621356.00 Pleasant Lake Pace Project No.: 10527724

Dear Kevin Menken:

Enclosed are the analytical results for sample(s) received by the laboratory on August 07, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Minneapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Amanda J albeedut

Amanda Albrecht amanda.albrecht@pacelabs.com (612)607-6382 Project Manager

Enclosures

cc: BarrDM, Barr Engineering Company Data Management, Barr Engineering Terri Olson, Barr Engineering Company Accounts Payable, Barr Engineering

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

Project: 23621356.00 Pleasant Lake Pace Project No.: 10527724

Pace Analytical Services - Minneapolis MN

A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #: MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Marvland Certification #: 322 Massachusetts DWP Certification #: via MN 027-053-137 Michigan Certification #: 9909 Minnesota Certification #: 027-053-137 Minnesota Dept of Ag Certification #: via MN 027-053-137 Minnesota Petrofund Certification #: 1240 Mississippi Certification #: MN00064 Missouri Certification #: 10100 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Primary Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Vermont Certification #: VT-027053137 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C Wisconsin Certification #: 999407970 Wyoming UST Certification #: via A2LA 2926.01

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

SAMPLE SUMMARY

Project: 23621356.00 Pleasant Lake

Pace Project No.: 10527724

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10527724001	S1_0-2	Solid	05/29/20 15:00	08/07/20 10:55
10527724002	S1_2-4	Solid	05/29/20 15:01	08/07/20 10:55
10527724003	S1_4-6	Solid	05/29/20 15:02	08/07/20 10:55
10527724004	S2_0-2	Solid	05/29/20 15:15	08/07/20 10:55
10527724005	S2_2-4	Solid	05/29/20 15:16	08/07/20 10:55
10527724006	S2_4-6	Solid	05/29/20 15:17	08/07/20 10:55
10527724007	S3_0-2	Solid	05/29/20 15:30	08/07/20 10:55
10527724008	S3_2-4	Solid	05/29/20 15:31	08/07/20 10:55
10527724009	S3_4-6	Solid	05/29/20 15:32	08/07/20 10:55
10527724010	S4_0-2	Solid	05/29/20 15:45	08/07/20 10:55
10527724011	S4_2-4	Solid	05/29/20 15:46	08/07/20 10:55
10527724012	S4_4-6	Solid	05/29/20 15:47	08/07/20 10:55
10527724013	S5_0-2	Solid	05/29/20 16:01	08/07/20 10:55
10527724014	S5_2-4	Solid	05/29/20 16:02	08/07/20 10:55
10527724015	S5_4-6	Solid	05/29/20 16:03	08/07/20 10:55
10527724016	S6_0-2	Solid	05/29/20 16:15	08/07/20 10:55
10527724017	S6_2-4	Solid	05/29/20 16:16	08/07/20 10:55
10527724018	S6_4-6	Solid	05/29/20 16:17	08/07/20 10:55

SAMPLE ANALYTE COUNT

Project:23621356.00 Pleasant LakePace Project No.:10527724

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10527724001	S1_0-2	EPA 6010D	IP	1	PASI-M
10527724002	S1_2-4	EPA 6010D	IP	1	PASI-M
10527724003	S1_4-6	EPA 6010D	IP	1	PASI-M
10527724004	S2_0-2	EPA 6010D	IP	1	PASI-M
10527724005	S2_2-4	EPA 6010D	IP	1	PASI-M
10527724006	S2_4-6	EPA 6010D	IP	1	PASI-M
10527724007	S3_0-2	EPA 6010D	IP	1	PASI-M
10527724008	S3_2-4	EPA 6010D	IP	1	PASI-M
10527724009	S3_4-6	EPA 6010D	IP	1	PASI-M
10527724010	S4_0-2	EPA 6010D	IP	1	PASI-M
10527724011	S4_2-4	EPA 6010D	IP	1	PASI-M
10527724012	S4_4-6	EPA 6010D	IP	1	PASI-M
10527724013	S5_0-2	EPA 6010D	IP	1	PASI-M
10527724014	S5_2-4	EPA 6010D	IP	1	PASI-M
10527724015	S5_4-6	EPA 6010D	IP	1	PASI-M
10527724016	S6_0-2	EPA 6010D	IP	1	PASI-M
10527724017	S6_2-4	EPA 6010D	IP	1	PASI-M
10527724018	S6_4-6	EPA 6010D	IP	1	PASI-M

PASI-M = Pace Analytical Services - Minneapolis

Project: 23621356.00 Pleasant Lake

Pace Project No.: 10527724

Sample: S1_0-2	Lab ID:	10527724001	Collecte	d: 05/29/2	20 15:00	Received: 08/	07/20 10:55 Ma	atrix: Solid		
Results reported on a "wet-we	eight" basis									
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6010D MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	ethod: EF	PA 3050B				
	Pace Analytical Services - Minneapolis									
Iron	2230	mg/kg	5.0	1.9	1	08/13/20 07:37	08/13/20 17:03	7439-89-6		

Project: 23621356.00 Pleasant Lake

Pace Project No.: 10527724

Sample: S1_2-4	Lab ID:	10527724002	Collecte	d: 05/29/2	20 15:01	Received: 08/	07/20 10:55 Ma	atrix: Solid		
Results reported on a "wet-we	eight" basis									
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6010D MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	ethod: EF	PA 3050B				
	Pace Analytical Services - Minneapolis									
Iron	2300	mg/kg	4.7	1.8	1	08/13/20 07:37	08/13/20 17:06	7439-89-6		

Project: 23621356.00 Pleasant Lake

Pace Project No.: 10527724

Sample: S1_4-6	Lab ID:	10527724003	Collecte	d: 05/29/2	20 15:02	Received: 08/	07/20 10:55 Ma	atrix: Solid		
Results reported on a "wet-we	eight" basis									
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6010D MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	ethod: EF	PA 3050B				
	Pace Analytical Services - Minneapolis									
Iron	2370	mg/kg	4.8	1.8	1	08/13/20 07:37	08/13/20 17:09	7439-89-6		

Project: 23621356.00 Pleasant Lake

Pace Project No.: 10527724

Sample: S2_0-2	Lab ID:	10527724004	Collecte	d: 05/29/2	20 15:15	Received: 08/	07/20 10:55 Ma	atrix: Solid		
Results reported on a "wet-weight" basis										
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6010D MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	ethod: EF	PA 3050B				
	Pace Analytical Services - Minneapolis									
Iron	2680	mg/kg	5.0	1.9	1	08/13/20 07:37	08/13/20 17:12	7439-89-6		

Project: 23621356.00 Pleasant Lake

Pace Project No.: 10527724

Sample: S2_2-4	Lab ID:	10527724005	Collecte	d: 05/29/2	20 15:16	Received: 08/	/07/20 10:55 Ma	atrix: Solid	
Results reported on a "wet-w	eight" basis								
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA 6	010D Prep	paration Me	ethod: EF	PA 3050B			
	Pace Anal	ytical Services	- Minneapo	olis					
Iron	2550	mg/kg	4.6	1.8	1	08/13/20 07:37	08/13/20 17:14	7439-89-6	

Project: 23621356.00 Pleasant Lake

Pace Project No.: 10527724

Sample: S2_4-6	Lab ID:	10527724006	Collecte	d: 05/29/2	20 15:17	Received: 08/	07/20 10:55 Ma	atrix: Solid	
Results reported on a "wet-we	eight" basis								
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	ethod: EF	PA 3050B			
	Pace Anal	ytical Services	 Minneapo 	olis					
Iron	2760	mg/kg	4.7	1.8	1	08/13/20 07:37	08/13/20 17:23	7439-89-6	

Project: 23621356.00 Pleasant Lake

Pace Project No.: 10527724

Sample: S3_0-2	Lab ID:	10527724007	Collecte	d: 05/29/2	20 15:30	Received: 08/	07/20 10:55 Ma	atrix: Solid	
Results reported on a "wet-we	eight" basis								
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	ethod: EF	PA 3050B			
	Pace Ana	lytical Services	- Minneapo	lis					
Iron	3720	mg/kg	4.9	1.8	1	08/13/20 07:37	08/13/20 17:26	7439-89-6	

Project: 23621356.00 Pleasant Lake

Pace Project No.: 10527724

Sample: S3_2-4		10527724008	Collecte	d: 05/29/2	20 15:31	Received: 08/	07/20 10:55 Ma	atrix: Solid	
Results reported on a "wet-w	eight" basis								
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	ethod: EF	PA 3050B			
	Pace Ana	lytical Services	- Minneapo	lis					
Iron	3450	mg/kg	5.0	1.9	1	08/13/20 07:37	08/13/20 17:29	7439-89-6	

Project: 23621356.00 Pleasant Lake

Pace Project No.: 10527724

Sample: S3_4-6	Lab ID:	10527724009	Collecte	d: 05/29/2	20 15:32	Received: 08/	07/20 10:55 Ma	atrix: Solid	
Results reported on a "wet-we	eight" basis								
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	ethod: EF	PA 3050B			
	Pace Anal	ytical Services	- Minneapo	lis					
Iron	4130	mg/kg	5.0	1.9	1	08/13/20 07:37	08/13/20 17:32	7439-89-6	

Project: 23621356.00 Pleasant Lake

Pace Project No.: 10527724

Sample: S4_0-2		10527724010	Collecte	d: 05/29/2	20 15:45	Received: 08/	07/20 10:55 Ma	atrix: Solid	
Results reported on a "wet-w	eight" basis								
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP		Method: EPA 6 lytical Services	•		ethod: EF	PA 3050B			
		,					00/40/00 47 05	7400.00.0	
Iron	2140	mg/kg	4.6	1.7	1	08/13/20 07:37	08/13/20 17:35	7439-89-6	

Project: 23621356.00 Pleasant Lake

Pace Project No.: 10527724

Sample: S4_2-4		10527724011	Collecte	d: 05/29/2	20 15:46	Received: 08/	07/20 10:55 Ma	atrix: Solid	
Results reported on a "wet-we	eight" basis								
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP		Method: EPA 6	•		ethod: EF	PA 3050B			
	Pace Ana	lytical Services	- winneapo	lis					
Iron	2140	mg/kg	4.5	1.7	1	08/13/20 07:37	08/13/20 17:38	7439-89-6	

Project: 23621356.00 Pleasant Lake

Pace Project No.: 10527724

Sample: S4_4-6	Lab ID:	10527724012	Collecte	d: 05/29/2	20 15:47	Received: 08/	07/20 10:55 Ma	atrix: Solid	
Results reported on a "wet-we	eight" basis								
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	ethod: EF	PA 3050B			
	Pace Anal	ytical Services	- Minneapo	lis					
Iron	2200	mg/kg	4.8	1.8	1	08/13/20 07:37	08/13/20 17:41	7439-89-6	

Project: 23621356.00 Pleasant Lake

Pace Project No.: 10527724

Sample: S5_0-2	Lab ID:	10527724013	Collecte	d: 05/29/2	20 16:01	Received: 08/	07/20 10:55 Ma	atrix: Solid	
Results reported on a "wet-we	eight" basis								
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA 6	010D Prep	paration Me	ethod: EF	PA 3050B			
	Pace Ana	lytical Services	- Minneapo	olis					
Iron	2630	mg/kg	4.6	1.8	1	08/13/20 07:37	08/13/20 17:44	7439-89-6	

Project: 23621356.00 Pleasant Lake

Pace Project No.: 10527724

Sample: S5_2-4	Lab ID:	10527724014	Collecte	d: 05/29/2	20 16:02	Received: 08/	07/20 10:55 Ma	atrix: Solid	
Results reported on a "wet-we	eight" basis								
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	ethod: EF	PA 3050B			
	Pace Anal	lytical Services	- Minneapo	lis					
Iron	2770	mg/kg	4.8	1.8	1	08/13/20 07:37	08/13/20 17:47	7439-89-6	

Project: 23621356.00 Pleasant Lake

Pace Project No.: 10527724

Sample: S5_4-6	Lab ID:	10527724015	Collecte	d: 05/29/2	20 16:03	Received: 08/	07/20 10:55 Ma	atrix: Solid	
Results reported on a "wet-we	eight" basis								
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	ethod: EF	A 3050B			
	Pace Anal	ytical Services	- Minneapo	lis					
Iron	2710	mg/kg	4.5	1.7	1	08/13/20 07:37	08/13/20 17:50	7439-89-6	

Project: 23621356.00 Pleasant Lake

Pace Project No.: 10527724

Sample: S6_0-2	Lab ID:	10527724016	Collected	d: 05/29/2	20 16:15	Received: 08/	07/20 10:55 Ma	atrix: Solid	
Results reported on a "wet-we	eight" basis								
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	ethod: EF	PA 3050B			
	Pace Anal	lytical Services	- Minneapo	lis					
Iron	2910	mg/kg	4.5	1.7	1	08/13/20 07:37	08/13/20 17:59	7439-89-6	

Project: 23621356.00 Pleasant Lake

Pace Project No.: 10527724

Sample: S6_2-4	Lab ID:	10527724017	Collected	d: 05/29/2	20 16:16	Received: 08/	07/20 10:55 Ma	atrix: Solid	
Results reported on a "wet-w	eight" basis								
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	ethod: EF	PA 3050B			
	Pace Ana	lytical Services	- Minneapo	lis					
Iron	3360	mg/kg	4.9	1.8	1	08/13/20 07:37	08/13/20 18:02	7439-89-6	

Project: 23621356.00 Pleasant Lake

Pace Project No.: 10527724

Sample: S6_4-6	Lab ID:	10527724018	Collecte	d: 05/29/2	20 16:17	Received: 08/	07/20 10:55 Ma	atrix: Solid	
Results reported on a "wet-we	eight" basis								
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA 6	010D Prep	paration Me	ethod: EF	PA 3050B			
	Pace Ana	lytical Services	 Minneapo 	olis					
Iron	3360	mg/kg	4.7	1.8	1	08/13/20 07:37	08/13/20 18:04	7439-89-6	

QUALITY CONTROL DATA

Project:	23621356.0	00 Pleasan	nt Lake										
Pace Project No.:	10527724												
QC Batch:	691690			Analy	sis Metho	d:	EPA 6010D						
QC Batch Method:	EPA 3050	В		Analy	sis Descri	ption:	6010D Solid	ds					
				Labor	atory:		Pace Analy	tical Sei	vices - Minnea	apolis			
Associated Lab Sam	10	527724008	, 10527724002 8, 10527724009 5, 10527724016	, 1052772	4010, 105	27724011,							
METHOD BLANK:	3697981				Matrix: S	olid							
Associated Lab Sam	10	527724008	, 10527724002 3, 10527724009 5, 10527724016	, 1052772	4010, 105	27724011,							
				Blan	k	Reporting							
Param	neter		Units	Resu	ılt	Limit	MD	L	Analyzed	Qi	ualifiers		
Iron			mg/kg		2.8J	4	1.9	1.9	08/13/20 16:	33 P8			
LABORATORY CON	NTROL SAM	IPLE: 36	97982										
				Spike	LC	S	LCS	%	6 Rec				
Param	neter		Units	Conc.	Re	sult	% Rec	L	imits	Qualifiers			
Iron			mg/kg	96	2	997	10	4	80-120				
MATRIX SPIKE & M			ATE: 369798	83		369798	4						
				MS	MSD								
Parameter		1 Units		Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Re	MSD c % Rec	% Rec Limits	RPD	Max RPD	Qual
Iron		mg/kg	7900	1000	1000	8880	9050		98 115	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 23621356.00 Pleasant Lake

Pace Project No.: 10527724

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

P8 Analyte was detected in the method blank. All associated samples had concentrations of at least ten times greater than the blank or were below the reporting limit.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:23621356.00 Pleasant LakePace Project No.:10527724

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10527724001	 S1_0-2	EPA 3050B	691690	EPA 6010D	692421
10527724002	S1_2-4	EPA 3050B	691690	EPA 6010D	692421
10527724003	S1_4-6	EPA 3050B	691690	EPA 6010D	692421
10527724004	S2_0-2	EPA 3050B	691690	EPA 6010D	692421
10527724005	S2_2-4	EPA 3050B	691690	EPA 6010D	692421
10527724006	S2_4-6	EPA 3050B	691690	EPA 6010D	692421
10527724007	S3_0-2	EPA 3050B	691690	EPA 6010D	692421
10527724008	S3_2-4	EPA 3050B	691690	EPA 6010D	692421
10527724009	S3_4-6	EPA 3050B	691690	EPA 6010D	692421
10527724010	S4_0-2	EPA 3050B	691690	EPA 6010D	692421
10527724011	S4_2-4	EPA 3050B	691690	EPA 6010D	692421
10527724012	S4_4-6	EPA 3050B	691690	EPA 6010D	692421
10527724013	S5_0-2	EPA 3050B	691690	EPA 6010D	692421
10527724014	S5_2-4	EPA 3050B	691690	EPA 6010D	692421
10527724015	S5_4-6	EPA 3050B	691690	EPA 6010D	692421
10527724016	S6_0-2	EPA 3050B	691690	EPA 6010D	692421
10527724017	S6_2-4	EPA 3050B	691690	EPA 6010D	692421
10527724018	S6_4-6	EPA 3050B	691690	EPA 6010D	692421

COC Number: NO EREDE2		Matrix Code: Preservative Code:	= Groundwater	WW = Water B = HCl	1 050770	2.92			[24	s %	Preservative Code	Can report total iron with		need for % solids was	meesurments. wh	SW		E		53	000	Time Date Time	Date 7/7/20 0	Requested D	
Analysis Requested	Water S						6	2]Þ4	roT .	*	×	×	×	×	X	×			×		Time Received by:	Time Beceived by:	Air Bill Number:	
					/ N tair	uo <u>-</u> ,			əqui /SW	Matrix ot	Code Perf Tota	5D [lce? Date N 8/6/20		Air Carrier	her:
		INVOICE TO	Fre.			2			23621356-00	Ŭ	(mm/dd/yyyy) (hh:mm)	120 15-00	15:01	20:51	15:15	15210	61531	15:30	15:31	15:32	15:45	- mule B	Acs.	und Courie	Temnerature
		NI	Company: Barr	Address:	Address:	Name:	email:	P.O.	Barr Project No: 23	epth Unit	Stop (m./ft. (mm/d) or in.)	02/62/5									\nearrow	Relinquished by:	Relinquished by:	ped VIA:	Sampler
former in the second second	OM D NW	TO	Ere.				renter @ barr-com		r t Labe		Start												tenten		
	Sample Origination State	REPORT 1	Company: Ban En		Address:	Name: Kerin Nenken	email: Kmenken@	Copy to: Ban DM@Dan.com	Project Name: Di Ed Son 1	l ocation		S1-0-2cm	51-2-4cm	52_4-6cm	52-0-2ch	52-2-4 cm	S2_4-bcm	7. 53.0-20-	53_2-4cm	53-4-6 cm	10. 54-0-2cm	BARR USE ONLY	Barr Proj. Manager: (Lewin	Bar DQ Manager: NA	Lats Name: Pace Lats Location: Male

	of Of afer A vater A water A A A A A B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B	spiloS %	1 6 3 4 4 4 1 1 6 3 3 4 1 1 1 6 3 3 4 1 1 1 1 6 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ACZ 8.6.20 16 CO	16 215 Received by:	$\left \bigcup_{n} \frac{ ce? }{ co } \frac{\mathcal{S}/6}{20} \frac{Date}{ c } \right \frac{1}{ c }$	White Merken	Relinquished by	Sampled by: Kenin Minder
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Date 8. 6. 20	Received by:	02/9/8	2	Relinquished	BARR USE
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Date 8. 6. 20	Received by:	02/9/8	5	Relinquished	BARR USE
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Date S. C. Zo	Received by:	02/9/8 efec	2	Relinquished	BARR USE
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Date	Received by:	Date	0	Relinquished	BARR USE ONLY
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		×				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						5.55
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	U X					10Cm
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MX MX	×				-6cm
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	LIQ	X	/e	162		-Y.C.
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ゆいつ	<	Ś	1(62)		-2 <i>c</i> m
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		<u> </u>				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Sin	7	03	16:0		-6cm
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	410	X	20			4cm
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		<		(e)((cm
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.2	×.	ч っ	<u>.</u>		-6cm
Mit ¥MN Mole TX Ur Mater Soli Container Address TTO Involce TO Invo	æ	×	_	5		-Yea
Mit Min Mit Min Matter Soli Common. Mit To INVOICE TO INVOICE TO INVOICE TO Matrix Company: Barry East Sary East Matrix Common: Matrix Code: Matrix Code: Matrix Common: Matrix Code: Matrix Code: Matrix Code Matrix Code: Matrix Code: Matrix Code Matrix Code: Matrix Code: Matrix Code Name: Name: Matrix Code Name: No Name:	rieid Flitered Y/N				5	
Mit Kin Mo No Matter Soil	Preservative Code		Code erf	(mm/dd/wwv)	Stop	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		%	Matrix otm	Collection	Sample Depth	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	нп		SW	236213	Barr Project	ne: Pleasant Lake
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	I Ⅲ ⊑ —				P.O.	arrDM@barr.com
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	= Other G =		-		email:	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	= Sediment F =				Name:	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Drinking Water D =				Address:	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Surface Water B = Waste Water C =				Address:	,
MI KMN MO ND TX UT Water Soil COLVATION: NT TO INVOICE TO INVOICE TO Matrix Code:	Groundwater A =		s	M C	Company:	Barr tre
				INVOICE TO		뉟
Water Soil Conventioner.	ן פ ר					N N
		Soil				

H:RLG/STDFORMS/Chain of Custody Form 2015 RLG Rev. 01/30/2020

	\sim		Doc	ument N	lame:	Docu	ument	Revised: 27Mar2	2020
	Pace Analytical [®]	ample Co	ndition	Upon R	eceipt (SCUR) - I	MN	F	age 1 of 1	
			Do	cument	No.:	Р	ace An	alytical Services	-
		EN	V-FRM	-MIN4-0	150 Rev.00		N	linneapolis	
Sample Co Upon R	eceipt			Pro	oject #:	0#:1	.05	527724	•
Courier:	<u>్రిజర్ కార్ర</u> Sed Ex UPS Pace Speede			IXCli See Exc	ent Cl	: AA1 IENT: BAI		Due Date: 08	3/21/20
Tracking				[1997 - 1997 		
Custody S	eal on Cooler/Box Present?	XNo	Sea	is Intact	? 🗌 Yes 🕅 N	lo Biolo	gical Ti	ssue Frozen? 🔄 Y	es 🗌 No 🕅 N/A
Packing N]None	XOth	er: <u>PB</u>	<u> </u>	Т	emp Blank? 💢	Yes 🗌 No
Thermomo	<u> </u>		Type of I		Wet 🗌 Blue	None	Dr	y Melted	
Did Sample	es Originate in West Virginia? []Yes 🕅 No	· Wei	re All Co	ntainer 1	emps Taken? 🗌 Ye]N/A		·
Temp should	be above freezing to 6°C Cooler Temp R Factor: ひ・ン Cooler Temp Correct	-	-		<u> 4. </u> 3,9	⁰c		ge Corrected Tem temp blank only) °C	. See Exceptions
			p blank			•			1 Container
Did samples	Ilated Soil: ([] N/A, water sample/Other: ; originate in a quarantine zone within the Un NC, NM, NY, OK, OR, SC, TN, TX or VA (check i If Yes to either question, fill out a	ited States: maps)?	Yes	No	 Did samples or Hawaii and Pue 	iginate from a erto Rico)?	foreign :	Contents: <u>//EC</u> source (internationa]Yes [X]No COC paperwork.	
							COMN	IENTS:	
Chain of Cus	tody Present and Filled Out?	XYes	No		1.				
Chain of Cus	tody Relinguished?	Yes	No		2.				
Sampler Nan	ne and/or Signature on COC?	X Yes	No		3.				
Samples Arri	ved within Hold Time?	Yes	No		4.				
Short Hold T	ime Analysis (<72 hr)?	Yes	No		5. Fecal Colifor	rm 🛄 HPC 🛄 T]Nitrate 🛄 Nitr	otal Colii rite ⊡Or	form/E coli 🔲 BOD/cE thophos 🗌 Other	BOD Hex Chrome
	round Time Requested?	Yes	X No		6.				
Sufficient Vo	lume?	Yes	No		7.				
Correct Cont	ainers Used?	XYes	□No		8.				
	tainers Used?	Yes	ΧNο						•
Containers Ir	itact?	X Yes	No		9.				
Field Filtered	Volume Received for Dissolved Tests?	Yes	No	XN/A				ed container?	es 🗌 No
Is sufficient in to the COC?	nformation available to reconcile the samples	s XYes	□No		11. If no, write ID/	Date/Time on	Contain	er Below:	See Exception
Matrix: 🗌 W	ater 🗷 Soil 🔲 Oil 🔲 Other								
	s needing acid/base preservation have been	Yes	No	XN/A	12. Sample #			·	
compliance v	s needing preservation are found to be in vith EPA recommendation?	Yes	□No	∭ N/A	🗌 NaOH		IO ₃	∐H₂SO₄	Zinc Acetate
(HNO₃, H₂SO₂	ı, <2pH, NaOH >9 Sulfide, NaOH>12 Cyanide)	i.			Positive for Res.	Yes			See Exception
	OA, Coliform, TOC/DOC Oil and Grease, vater) and Dioxin/PFAS	Yes	□No	⊠n/a	Chlorine?	No 0-6 Roll	pH Pap	er Lot# 0-6 Strip	0-14 Strip
					Res. Chiorine			0-0 5thp	0-14 3010
•	resent on soil VOA or WIDRO containers?	Yes	No	ĬN/A ⊠N/A	13.				See Exception
	VOA Vials (greater than 6mm)?	☐ Yes							
Trip Blank Pro	esent? stody Seals Present?	☐Yes			14. Paco Trip Ri	nklot#(ifn	urchasa	d).	
		Yes	No	⊠n/a		ank Lot # (if p		_	
CL Person Cont	IENT NOTIFICATION/RESOLUTION acted: Kevin M.				Date/Time:	Fiel 8/6/20	d Data	Required?	s 🔲 No
Comments/F	Deselution	port as	wet w	<u>eiaht</u>	· ·			·····	
	<u>p requirement.</u>		00						
	oject Manager Review: Umand		licec		Date:				
	er there is a discrepancy affecting North Carolin preservative, out of temp, incorrect containers)		e sample:	s, a copy o	of this form will be se	ent to the Nort	n Carolii	na DEHNR Certificati	on Office (i.e. out of

ā

Labeled by:	CEG
Labeled by:	CELA

Page 28 of 30

ſ	Pace Analytical®	Document Name: Sample Condition Upon Receipt (SCUR) Exception Form	Document Revised: 04Jun2020 Page 1 of 1
		Document No.:	Pace Analytical Services -
	1	ENV-FRM-MIN4-0142 Rev.01	Minneapolis

SCUR Exceptions:

Workorder #: 10527724

Out of Temp Sample IDs	Container Type	# of Containers		PM Notified?] No
			-	cate who was contacte If no, indicate reason w	
	· · · · · · · · · · · · · · · · · · ·			ple Cooler Project?	
· · · · · · · · · · · · · · · · · · ·				No Temp Blank	
			Read Temp	Corrected Temp	Average Temp
			14.5	14.3	13.9
			1.5.6	15.4	
			12.8	12.4	
			/3.6	13.4	
			Issue Type:	Con	tainer # of

	Issue Type:	Container
Tracking Number/Temperature	Sample ID	Туре
· · · · · · · · · · · · · · · · · · ·		
]	

pH Adjustment Log for Preserved Samples

Sample ID	Type of Preserv.	pH Upon Receipt	Date Adjusted	Time Adjusted	Amoun t Added (mL)	Lot # Added	pH After	In Compliance after addition? Yes No Yes No	Initials
		ь						Yes No	

Comments:

Containers

 \mathbb{P} ace Analytical "

Document Name: Service Center Transfer Checklist Document Number: ENV-FRM-MIN4-0135 Rev.00

Document Revised: 26Mar2020 Page 1 of 1 Pace Analytical Services -Minneapolis

Service Center Transfer Checklist

Service Center: MPLS 🗆 BLM 🙀 AZ 🗆
Client: <u>BARR</u>
Destination Lab: MPLS VM 🗆 Duluth 🗆
National 🗌 Other
Received w/ Custody Seal ? Yes 🗆 No 🖾
Custody Seal Intact ? Yes INO
Temperature $^{\circ}C$ $\overrightarrow{1.6}$ $\underbrace{+0.1}_{7.7}$ $\overbrace{-7.7}^{Temp}$
IR Gun: B88A0143310092
Rush 🔲 Short Hold 🗆 N/A 📈
Containers Intact ? Yes No
Repacked and Re-Iced ? Yes 🗆 No 🖂
Notes:
5.6, 8.6, 9.1
Avg = 7.8