Wilkinson Lake

Macrophyte and Biovolume Survey 8/11/17

This document contains two types of vegetation data collected on Wilkinson Lake. The first section details the methods and findings of a point intercept survey of macrophyte vegetation. The second section details the methods and results of a vegetation bio-volume survey.

Data collected and prepared by Ramsey Conservation District for Vadnais Lake Area Water Management Organization

800 East County Rd E. Vadnais Heights, MN 55127 Phone: (651) 204-6073 http://www.vlawmo.org/

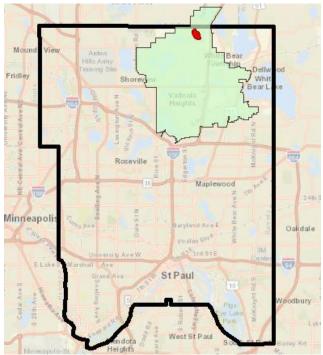


Figure 1. Location of Wilkinson Lake (red) in Ramsey County within VLAWMO borders

Wilkinson Lake Macrophyte Survey

August 11, 2017

Methods:

The point intercept method incorporating aerial photography and a Lowrance HDS-5[™] Global Positioning System (GPS) was used to assess the aquatic macrophyte community on Wilkinson Lake on August 11, 2017. Samples were taken at sixty evenly spaced (80 m) geo-referenced points (Figure 2). Data on depth, plant species, and abundance rank was recorded as displayed in Tables 2 and 3 and in the maps of this report. A secchi disk measurement was also taken in the center of the lake on the shady side of the boat, with results in Table 3.

A double-tined metal rake attached to an 11-meter rope was used to collect specimens. At each point, the device was thrown out approximately 1 meter and then dragged across the substrate for approximately one meter. Species were identified and given a ranking based on cover of rake tines (Table 1). Plant species that were floating in the water at the collection points were also counted.

Abundance rankings for percent cover of rake tines								
Percent Cover of Tines	Abundance Ranking							
81-100	5							
61-80	4							
41-60	3							
21-40	2							
1-20	1							

Table 1

Results:

Aquatic macrophytes were found at all 60 points surveyed (Figure 2). Canada Waterweed (*Elodea canadensis*) and White Water Lily (*Nymphaea odorata*) were the most prominent species present, found at most of the survey points. Flat-stem pondweed (*Potamogeton zosteriformis*), Filamentous Algae (*Spirogyra/Cladophora sp.*), and Coontail (*Ceratophyllum demersum*) were the next most common species. Found in fewer than 15% of the survey points were the following species: Curly Leaf Pondweed (*Potamogeton crispus*); Greater Duckweed (*Spirodela polyriza*); Sago Pondweed (*Potamogeton pectinatus*); Yellow Water Lily (*Nuphar lutea*), Slender Waternymph (*Najas gracillima*); Muskgrass (*Chara spp.*) and Stonewort (*Nitella sp.*). Although the specific species of stonewort was not determined, there was no indication that the plant detected was the invasive starry stonewort – no white bulbils were seen. The secchi disk reading was 0.9m (2.95 ft) (Table 3).

			Average	Percent
Species	Common Name	Scientific Name	Abundance	Occurrence
			8/11/2017	8/11/2017
1	Canada Waterweed	Elodea canadensis	2.92	98%
2	White Water Lily	Nymphaea odorata	2.06	82%
3	Flat-Stem Pondweed	Potamogeton zosteriformis	2.11	63%
4	Filamentous Algae	Spirogyra/Cladophora sp	2.4	42%
5	Coontail	Ceratophyllum demersum	1.35	28%
6	Curly Leaf Pondweed	Potamogeton crispus	1	13%
7	Greater Duckweed	Spirodela polyrhiza	1	12%
8	Sago Pondweed	Stuckenia pectinata	1.6	8%
9	Yellow Water Lily	Nuphar lutea	2.29	12%
10	Slender Waternymph	Najas gracillima	1.67	5%
11	Muskgrass	Chara spp .	3	7%
12	Stonewort	Nitella sp.	5	2%

% Occurrence and Avg Abundance of aquatic plant taxa present on Wilkinson Lake - Aug 11, 2017

Note. Percent occurrence represents the number of times a plant species was observed divided by the number of total sample sites where vegetation was observed. Average abundance is calculated as the average of the abundance ranking for an individual species present.

 Table 3

 Depth, secchi disk and vegetation abundance point survey results, August 11, 2017

pth, secchi disk	and vegetati	on abundan					/		1			
	Canada	Flat-Stem	White	Filament	Yellow	Sago		Greater	Curly-Leaf	Slender		
Point	Waterweed		Water	ous	Water	Pond	Coontail	Duckweed	Pondweed		Chara	Stonewo
			Lily	Algae	Lily	weed				nymph		
1	2	4	4				1	1				
2	2	4			2							
3	2	1		1			1		1			
4	3	3	1				1					
5	2				3		1		1			
6	1		2	2		1						
7	1	1	1	2			1					
8	1	2	4				1					
9	4	1	2		4		2	1				
10	2		4				1		1			
11	2		1							1		
12	1											
13	2	2	3									
14	2	2	4									
15	1			2						3		
16	1		1				1					
17	3		1									
18	2		2									
19	3	1	3	5	3		2	1				
20	3	2	2						1			
21	1	2	3	2								
22	3		2									
23	1		1	3								
24	3		1	2								
25	1	1	2						1			
26	4	1	2	3								
27	3	1	3									
28	2		1	2								
29	2		1	2								
30	1		1								1	
31	2		2						1			
32	3	1	4	5			2					
33	5		3	-			_					
34	3		3									
35	3		2									
36	2		2						1			
37		1	3								5	
38	3	2	2						1			
39	5	2	1	2					_			
40	2	4	2	3		2	1					
41	2	•	1			_	_				5	
42	5	2	3				2	1				
43	5	2	3	3			1	1				
44	5	2	1	5			-	-			1	
45	5	1	•	1	1		2	1			-	
46	5	2		_	1		_	_				
40	4	4		1	-	1						
48	5	1		1		2						
49	3	2	1	3		-						
50	3	2	1	5								
51	5	2	2	4								
52	1	4	-	1								
53	5	4	1	-						1		
54	5	-	1							-		
55	5	2	2		2							
	4	1	1	1	-	2						
56		4	2	3		-		1				
56 57	5	-		1			1	-				
57	5	2	3				-					
57 58	2	2	3	-								5
57 58 59	2 5	3		-			2					5
57 58 59 60	2		3	-			2					5
57 58 59 60	2 5 4	3 2	3		16	0		7	0	E	12	
57 58 59 60 cal Abundance	2 5 4 172	3 2 80	3 101	60	16	8	23	7	8	5	12	5
57 58 59 60 tal Abundance unt	2 5 4 172 59	3 2 80 38	3 101 49	60 25	7	5	23 17	7	8	3	4	5
57 58 59 60 tal Abundance	2 5 4 172	3 2 80	3 101	60			23					5

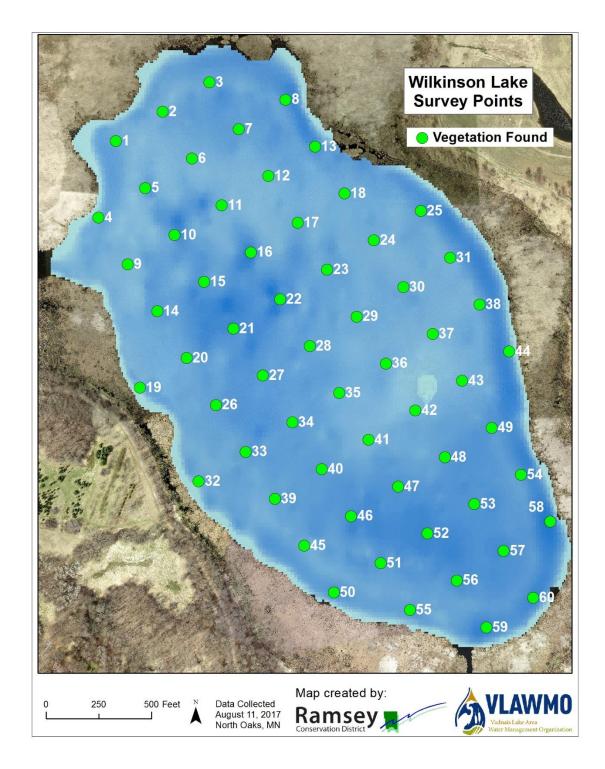
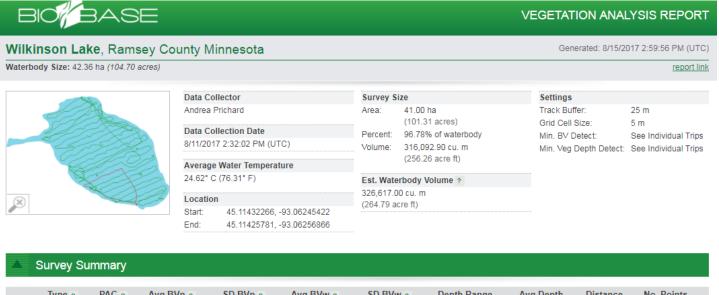


Figure 2. Wilkinson Lake vegetation point intercept survey locations. N=60.

Wilkinson Lake Biovolume Survey


August 11, 2017

Methods:

A Lowrance HDS-5_{TM} Global Positioning System (GPS)-enabled depth finder was used to collect submerged aquatic vegetation biovolume data on Wilkinson Lake on August 11, 2017. The lake was transected at a distance of 40 meters between transects at a speed of no more than 6 miles per hour. Sonar log data was recorded using the Lowrance HDS-5_{TM} Global Positioning System (GPS)-enabled depth finder to assess this data. Transducer data was processed using Contour Innovations, LLC, BioBase software.

Results:

The results below were produced by exporting the processed data from the BioBase system and interpolating spatial data using ArcGIS software. Results include maps as well as statistics of biovolume distribution represented as total percent of water column occupied by plant matter ranging from zero to one hundred. Interactive map data, including sonar log trip replays, can be viewed on the BioBase website:www.cibiobase.com.

		Type ?	PAC ?	Avg BVp ?	SD BVp ?	Avg BVw ?	SD BVw ?	Depth Range	Avg Depth	Distance	No. Points
			99.7%	82.9%	±23.1%	82.6%	±23.5%	0.3-1.29 m	0.55 m	16.81 km	1,137
Su	irvey	Grid	100%	88.1%	±15.9%	88.1%	±15.9%	0-1.2 m	0.7 m	-	9,276

AOI ?	Type ?	PAC ?	Avg BVp ?	SD BVp ?	Avg BVw ?	SD BVw ?	Depth Range	Avg Depth	Distance	No. Points	
1	Point	100%	97.7%	±10.1%	97.7%	±10.1%	0.31-1.29 m	0.47 m	1.06 km	88	
	Grid	100%	98.3%	±2.3%	98.3%	±2.3%	0.05-1.09 m	0.65 m	-	713	
2	Point	99.7%	81.6%	±23.5%	81.4%	±23.9%	0.3-1.27 m	0.56 m	15.76 km	1,049	
	Grid	100%	88%	±15.9%	88%	±15.9%	0-1.2 m	0.7 m	-	9,195	

	Biovolume Analysis by Quantity								
AOI ?	0-5%	5-20%	20-40%	40-60%	60-80%	>80%			
1	0%	1.14%	0%	0%	2.27%	96.59%			
2	0.29%	2.1%	5.82%	11.34%	14.87%	65.59%			

Biovolume Analysis by Depth

AOI 🤉	Depth	Type 🤉	Count	PAC ?	Avg BVp 7	SD BVp ?	Avg BVw ?	SD BVw ?
1	0-1m	Point	87	100%	97.9%	±10%	97.9%	±10%
	1-2m		1	100%	84.7%	±0%	84.7%	±0%
	2-3m		0	-	-	-	-	-
	3-4m		0	-	-	-	-	-
	4-5m		0	-	-	-	-	-
	5-6m		0	-	-	-	-	-
	6-7m		0	-	-	-	-	-
	7-8m		0	-	-	-	-	-
	8-9m		0	-	-	-	-	-
	>9m		0	-	-	-	-	-
	0-1m	Grid	712	100%	98.3%	±2.3%	98.3%	±2.3%
	1-2m		1	100%	99%	±0%	99%	±0%
	2-3m		0	-	-	-	-	-
	3-4m		0	-	-	-	-	-
	4-5m		0	-	-	-	-	-
	5-6m		0	-	-	-	-	-
	6-7m		0	-	-	-	-	-
	7-8m		0	-	-	-	-	-
	8-9m		0	-	-	-	-	-
	>9m		0	-	-	-	-	-
AOI 🤉	Depth	Type 🤉	Count	PAC 2	Avg BVp 7	SD BVp ?	Avg BVw ?	SD BVw ?
2	0-1m	Point	1045	99.7%	81.8%	±23.3%	81.5%	±23.7%
	1-2m		4	100%	37.3%	±22.7%	37.3%	±22.7%
	2-3m		0	-	-	-	-	-
	3-4m		0	-	-	-	-	-
	4-5m		0	-	-	-	-	-
	5-6m		0	-	-	-	-	-
	6-7m		0	-	-	-	-	-
	7-8m		0	-	-	-	-	-
	8-9m		0	-	-	-	-	-
	>9m		0	-	-	-	-	-
	0-1m	Grid	9149	100%	88.1%	±15.7%	88.1%	±15.7%
	1-2m		46	100%	58.8%	±18.6%	58.8%	±16.6%
	2-3m		0	-	-	-	-	-

Glossary

AOI

Area of Interest: Defines the individual transects or contiguous data samples as depicted by the color coding of each trip line. Seperate areas of interest can be generated through merging of multiple trips, appending data to a single sonar log or lapses in time (greater than five minutes) within a sonar log.

BVp

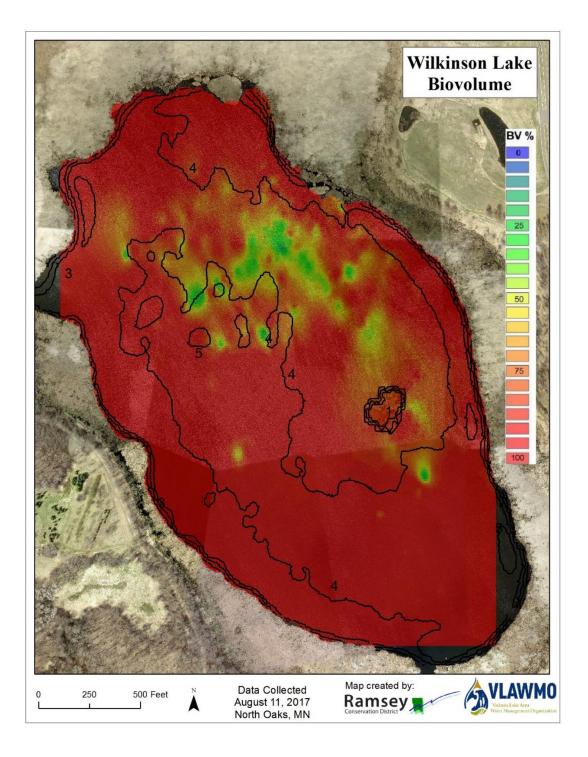
Biovolume (Plant):: Refers to the percentage of the water column taken up by vegetation when vegetation exists. Areas that do not have any vegetation are not taken into consideration for this calculation.

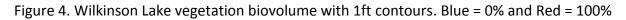
BVw

Biovolume (All water): Refers to the average percentage of the water column taken up by vegetation regardless of whether vegetation exists. In areas where no vegetation exists, a zero value is entered into the calculation, thus reducing the overall biovolume of the entire area covered by the survey.

PAC

Percent Area Covered: Refers to the overall surface area that has vegetation growing.


Grid


Geostatistical Interpolated Grid: Interpolated and evenly spaced values representing kriged (smoothed) output of aggregated data points. The gridded data is most accurate summary of individual survey areas.

Point

Individual Coordinate Point: A single point represents a summary of sonar pings and the derived bottom and canopy depths. Individual point data create an irregularily spaced dataset that may have overlaps and/or gaps in the data resulting in a increased potential for error.

Figure 3. Wilkinson Lake BioBase survey summary statistics.

