Pond Treatment with Spent Lime to Control Phosphorus Release from Sediments

July 18, 2019

Greg Wilson, Barr Engineering Company

Funding provided by:

Minnesota Stormwater Research Council

- Evaluate whether spent lime can reduce sediment phosphorus release from stormwater ponds (and lakes)
- Spent lime will be applied to two ponds—Oak Knoll Pond and Wakefield Pond (in RWMWD)
- Phosphorus mass-balance monitoring will follow treatment to assess whether phosphorus release has been controlled
- Project team—Barr, VLAWMO, RWMWD & SPRWS, Cities of White Bear Lake and Maplewood

Compare treatment options for sediment phosphorus release

Treatment Option	Benefits	Drawbacks
Dredging	Storage increase, longer term solution	Expensive
Alum	Not sensitive to anoxia; proven	Longevity may be limited in ponds/shallow lakes
Iron filings/ Spent lime	Cheaper (?)	Redox sensitive?? Longevity unknown

Spent lime for sediment phosphorus release

Spent lime

Spent lime for stormwater treatment

BARR

Spent lime slurry for pond applications

St. Paul Regional Water Services (SPRWS)

City of White Bear Lake

Spent Lime Lab Experiment

- 3 sediment cores collected from each pond (Wakefield Pond and Oak Knoll Pond)
- Sediment from each core composited for use in the dosing experiment
- Spent lime sourced from the Saint Paul Regional Water Services
- General characteristics of the sediment and spent lime:
 - Spent Lime: 87% water
 - Oak Knoll Pond Sediment
 - **86-91%**
 - Wakefield Pond
 - **81-87%**

Spent Lime Addition: results for Wakefield and Oak Knoll Ponds

Wakefield Core 1: Anaerobic

BARR

11

Spent Lime Addition: pH

Individual Tests

preliminary conclusions and next steps

- Identifying the expected Ca-P formation in the natural environment is challenging given that Ca-P formation is likely to be slower than other metal-phosphate reactions (such as Al-P formation)
- Tests demonstrated that Ca-P will be formed in sediments
- Ca-P formation in the tests appears to be predominantly due to organic P decay
- Optimal dose is approximately a 1:1 sediment/spent lime mixture on a volumetric basis
- Spent lime will be applied to two ponds—Oak Knoll Pond and Wakefield Pond (in RWMWD)
- Evaluate whether spent lime can reduce sediment phosphorus release from stormwater ponds (and lakes)

gwilson@barr.com 952-832-2672

